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The article describes a theoretical model of two-dimensional flow of a homogeneous liquid 
in a cylindrical space delimited by the shell of the mixing tank with a conical bottom, radial baffles 
and a high-speed axial impeller rotating in a cylindrical draft-tube. By means of the analytical 
solution of vortex flow equation the mean time flow of turbulent liquid in the vertical cross 
section of the vessel may be described in the form of Stokes stream function or mean velocity 
components. The results of theoretical description of the flow are in a good agreement with the 
experimental values measured by a Pitot direction tube and a hot film anemometer. 

--- ... --.---------

Overall characteristics of processes in equipments with mechanical impellers, e.g. 

power input, primary volumetric flow, homogenization time and others, are usually 
generalized in the form of criterion equations based on the theory of similarity. 
This approach, however, fails in the case of local characteristics. Therefore, the 
available data are usually either related to some specific apparatus in which the above 
characteristics have been determined, or interpreted rather qualitatively (describing 
certain trends in not fully specified equipment types). As the knowkdge of spatial 
distribution of such quantities is often decisive for understanding of the respective 
flow phenomena and, simultaneously, their experimental determination is usually 
more demanding than in the case of global approach, mathematical modelling 
of hydrodynamics of the liquid contents grows in importance due to the increasing 
availability of effective computers. In the general case, however, it is necessary 
to solve a complex system consisting of balance equations for mass, momentum 
and energyl,2 for unknown quantities wn W"" wz, p and g. The difficulty of solving 
such model is due to the spatial complexity of the given flow realization or to the 
degree of abstraction from this reality. The purpose of this study is to produce 
an applicable mathematical model of the field of the mean time components of vortex 
liquid flow in a vessel with an axial high-speed impeller and internals. 

The first attempts to grasp the flow pattern of mechanically stirred liquid had only qualitative 
character. Schematizing diagrams of liquid circulation were introduced e.g. by Rushton and Old-
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shuc3 , Porcelli and Marr4. The simplest quantitative models postulate potential flow of (ideal) 
liquid. For instance, the model of the so-called Rankin vortex requires the hyperbolic shape2 

of the radial profile of tangential velocity component Wcp in the potential flow. This model is often 
combined with the idea of the so-called vortex core, according to which a certain inner volume of 
liquid rotates -- due to its viscosity - with a constant angular velocity (linear radial profile of w). 
The mod.el is expected to be valid especially in case of unbaffled tanks5 •6 . It was however ap
plied also to the mixer with radial baffles by Fort, Neugebauer and Pastyrikov:i 7 and by Medek 
and Fort 8 . It was found that in the liquid flow leaving the axial blade impeller even the axial 
velocity component Wz has a similar profile like the component wcp, i.e. linear and subsequently 
hyperbolical. The solution of the potential equation of the (non-vortex) flow in other sections 
or the tank at a similar configuration of the system is given by Fort, Koza and Gra~ko
V{l'l, and Fort, Jaroch and Ho~falek\O. In the former study a numerical method of solution 
of the given equation was used, maximum error of the calculated streamline function values 
in the considered area below the impeller being 30%. The authors of the latter study have found 
a general analytic solution satisfying the potential flow equation in the form of infinite series 
of particular solutions. This solution, when applied to the upper tank section, i.e. to the space 
above the level of impeller upper blades, showed the error of about 10% with respect to the flow 
function. Fort, Obeid and Brezina II have used somewhat simpler solution of the equation. 
They applied a particular solution in the form of a simple algebraic function to the mixing system 
with a turbine impeller and radial baffles. The drawback of their not very complex calculation 
method consisted in the necessity to divide the described volume rather elaborately into many 
sub·sections. The model error had then amounted to 30~";;. 

A more realistic assumption for the description of processes in the mixed tank is the existence 
of vortex liquid flow in the major part of the tank volume (i.e. not only within vortex core). 
Theoretical solution of the two-dimensional vortex liquid flow in a cylindrical vessel published 
as early as 1884, is quoted by Gray and Matthews12 . The method has based on the simple 
dependence of the of liquid particles vorticity on the radial coordinate (direct proportion). The so
lution of analogous equation for three-dimensional axisymmetrical ideal liquid flow in a vessel 
without radial baffles and with a turbine impeller placed at the bottom was published by Marty
nov 13. The author states a good qualitative agreement of his model with reality and points out 
the rather schematic nature of the simple model of combined Rankin vortex. For a similar 
configuration with radial baffles a model of viscous liquid flow was published by Pavlushenko 
and Kopyleva 14. Their analytical solution of axis ymmetrica I vortex flow was in a good agree
ment with the published data. The axial mean velocity component in systems with a turbine 
impeller and radial baffles was modelled by Orlov, Tchepura and Tumanovl5 . Having assumed 
constant viscosity in the whole liquid volume, they derived the formula for calculating radial 
velocity profile Wz (parabolical dependence) in the cross section leading through the centres 
of axial-radial liquid circulation. The approximate analytical description of circulation liquid 
flow in the vessel with radial impeller satisfying the continuity equation has been given by Platzer 
and No1l 16. In their following work 1 7 the authors have used an analogous approach for the 
description of mean flow in tank with axial impeller stating a good agreement of their model 
with measurement results. 

Recently numerous attempts have been made to solve the equations of real liquid motion 
numerically. Kuriyama and coworkersl8 for instance have used this approach to model high 
viscous liquid flow in horizontal cross section of a mixing tank with an anchor type impeller. 
Apart from mean velocity field determination their method also allowed calculation of impeller 
power input. Numerically, the motion equations for an axisymmetrical isotropically turbulent 
flow of real Newtonian liquid in a vessel with radial baffles have been solved by Placek19, who -
beside the entire description of mean velocity - also obtained the field of effective values of turbu-
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lence. Another example of numerical solution of transport equations is the work of Harvey 
and Greaves20 , who - in addition to the mean velocity field - have also described the distribu
tion of some turbulent flow characteristics. 

THEORETICAL 

The object of investigation is the agitated system, schematically represented in Fig. 1. 
A system of cylindrical coordinates r, qJ, Z is introduced, with the origin in the inter
section of the vessel axis and the plane ofthe upper base of the conical bottom, which 
is on the level of the lower edge of the draft-tube and of impeller blades. 

To facilitate the description of processes in the tank, the liquid volume may be 
divided into four simply continuous regions. (Fig. 1). Three of them have a cylindrical 
shape or a shape of hollow cylinder (region I inside the draft-tube, region IV close 
to the liquid surface, region III between the draft-tube and vessel walls), while the last 
one (region II) is in the shape of truncated cone. It is apparent that only this region 
has an unsuitable shape with respect to the introduced coordinate system (in the 
system of cylindrical coordinates the oblique bottom wall cannot constitute the so-cal
led coordinate surface), therefore it ought to be excluded from further considerations. 
Remaining regions I, III and IV shall then be described in a formally identical way 
based on analytical solution of vortex flow equation. 

Let us first formalize the boundaries of the modelled regions. The coordinate 
surface forming the inner or the outer lateral area shall always be characterized 
by the value of radial coordinate ro, rn, respectively and the coordinate Zo and Zt. 

Furthemore, let us assume the fulfilment of the following simplifying conditions 
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FIG. I 

Mixing equipment with an axial high-speed 
impeller and internals 
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for the above areas: a) The liquid is incompressible and isothermal. b) The flow is 
quasistationary and has a vortex character. c) In case of intense turbulent flow the 
influence of inertial forces on the vortex transport may be neglected. d) The flow is 
symmetrical along the vertical system axis. e) The motion of liquid particles takes 
place in a radial-axial plane. 

For an axisymmetrical vortex flow of incompressible liquid with a zero value 
of tangential velocity component a Navier-Stokes equation in the form 

O(E2"') _ ! A'" E2'" _ ! 0("', E2",) = VE2(E2"') 
or r oz r r oCr, z) 

(l) 

is given by Bird and coworkers22 • The fulfilment of continuity equation is secured 
by using Stokes stream function "', from which the components of liquid velocity 
vector W = (wr • 0, wz ) may be derived according to the relations 

_ 1 a", 
W =--' r , 

r aZ 
1 A'" - --
r or 

(2) 

Under these conditions the vortIcIty vector U = V x w has the only non-zero 
component U = (0, Q." 0), which can be, using relations (2), expressed as follows: 

(3) 

The differential operator E2 which also appears in Eq. (1) has the following form 

(4) 

Equation (1) is still too complex for a general solution under the given conditions. 
But the situation may be substantially simplified by the application of assumptions 
b) and c). Thus the elements on the left hand side of the equation vanish. Dividing 
the equation by means of coefficient v, we obtain a linear differential expression 

(5) 

or, with respect to relation (3) 

(6) 

which may be solved analytically. 
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The boundary conditions of flow models (3) and (6) on those boundaries which are 
in penetrable for the liquid flow are summed up in Table I. On these boundaries, 
always characterized by the constant t/I value (one of the basic properties of this 
function), the zero value of Q<p is always defined. On the other hand, for those parts 
of region boundary which intersect the liquid flow (it is always one of the cylinder 
bases) a non-homogeneous boundary condition in the form of the radial profile 
of t/I (or wz) and wr must be introduced. 

For the solution of model equations (3) and (6) the method of separation of vari
ables is used 23. Supposing the particular solution of Eq. (6) can be expected in the 
form of the product of functions 

(7) 

relation (6) may be transformed into two easily integrable ordinary differential 
equations 

(8) 

and 

o~ = o. (9) 

If to the solutions thus obtained the subscript i = 0 is ascribed, the solution (7) 
of Eq. (6) may be expressed as 

(10) 

This particular solution may be satisfactory for the sake of further considerations 

TABLE II 

Results of application of the boundary conditions on the cylindrical walls of solved regions 

Region Co Eo Fo C j, i= 1,2, ... 
-.. _--

I 0 0 
If/(rn• z) 

0 -r-2-
n 

III -r; 0 
If/(ro • z) Jt(kj.ro) 

- r;'-:' r6 N 1 (k j .ro) 

IV 0 0 0 0 
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If it is substituted into (3), we obtain un homogeneous equation 

(11) 

whose solution is the goal of the so far described procedure. The solution of homo
geneous equation (11), representing a non-vortex (potential) flow, shall be expected 
in the form 

l{I~(r, z) = r. Tt.j(r). p~(z); i = 0, 1 .... (12) 

Using relation (12) the homogeneous differential equation (11) may be separated 
into two ordinary differential equations and then solved. 

The function of the radial coordinate may then be determined in the form of alge
braic function 

or cylindrical function 24 

C 
TJ ,0(1') = I' + ~; i = 0, 

r 
(13) 

(14) 

(the first index T corresponds to Bessel function index J or to that of Neumann 
function N). The dependence of solution (12) on the axial coordinate is in the 
simplest case - linear 

Pi(z) = Eoz + Fo; i = 0 (15) 

or given by the hyperbolic function 

In order to include also the right hand side of equation (11) into this solution, this 
algebraic function is formally transformed into an infinite series24 applying the rules 
of Fourier-Bessel development 

'Xl 

.0 •• 0 (1', z) = L Tt.;(r). olz). (17) 
j=l 

Here, function OJ includes linear dependence .0. on the axial coordinate, contained 
in Eg. (11), namely 

(18) 

and function T1,I satisfies relation (12). 
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Analogously as in solving the homogeneous equation, the particular solution of in
homogeneous equation (11) will be assumed in the form 

(19) 

which, having been applied to the equation to be solved, converts it into the form 
of an ordinary differential equation 

p~(Z) - k~ . Pj(z) = O/z); i = 0,1, ... (20) 

whose solution can be found by means of variation of constants23 as 

Pi(Z) = pi(z) + k;! .fz OJ(~)' sinh (k j • Z - k j • Od~; i = 0,1, .... (21) 
Zo 

Due to the linear character of this differential equation, the linear solution of flow 
model (11) may be written in the form of an infinite sum of particular solutions, 
where the zero member includes the simplest case of potential flow - piston flow -
and is given by the product of functions (13) and (15), and the following terms are 
represented by the product of (14) and (21), i.e. 

00 oc 

t/J(r, z) = L t/Jj = t/Jo + r . L TJ ,j(r). Pi(Z) . (22) 
i=O i=l 

In every member of the solution of flow model (22) there are six unknown para
meters k, C, F, wand 6) (as for the zero member, the values of ko, Wo and 6)0 are 
a priori equal to zero), which are to be determined from the boundary conditions 
of the solution. The boundary conditions on the vertical coordinate surface r = ro 
and r = rn (Table I) are most likely satisfied, if the value t/Jj (i = 1,2, ... ) is zero, 
i.e. if we put 

(23) 

and, moreover, if the possible non-zero value of t/J is included in the term t/Jo. As the 
zero value of parameter Eo directly follows from the fact that the boundary condi
tions for t/J are independent on the axial coordinate z, (24) must be fulfilled 

(24) 

The explicit expressions determining the model parameters derived from conditions 
(23) and (24), are summed up in Table II. Furthermore, conditions (23) implicitly 
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prescribe the progression of values ki' which, however, can be evaluated by means 
of a suitable numerical method only after the conditions of the given problems are 
specified. 

The boundary conditions in the bases of the examined region are given, in the case 
of a cross section through which the liquid passes, by the radial profile of the stream 
function '" (or the velocity component wz) and wr • These are most probably given 
in the form of an algebraic function, which can be transformed by means of a sui
table orthogonalization method. With respect to the boundary conditions at ro 
and rn (Table I), the Fourier-Bessel development can be used for the radial velocity 
component 

00 00 

w,(r, zl;) = L W"i = L TI ir) . P;(zl;); e = 0, 1 (25) 
i=O i= I 

(according to Table II the term w"o equals to zero). For the axial velocity component 
the respective development has the properties of the Dini series 

<Xl oc 

wz(r, z~) = L Wz,i = - L kiTOAr) . Pi(zl;) + wz,o, e = 0,1. (26) 
i=O i=\ 

The coefficients in (25) or (26) may then be determined according to the formula24 

(27) 

TABLE! 

Determination of the boundaries of modelled regions and of boundary conditions for", and D. 
in the case of inpenetrable cross sections 

Region e rl; ",(rt. z) D.(rt. z) , 
Zc ",(r, zC) D.(r, zc) 

0 0 0 0 0 0 
n Dtf2 const. > 0 0 1 HI 

III 0 Dtf2 const. > 0 0 0 0 
III n D/2 0 0 HI 
IV 0 0 0 0 0 HI 
IV n D/2 0 0 1 H 0 0 

-_.-._- -- -~-
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From thus determined parameter values Pi(zo), p;(zo), Pi(Z 1) and p;(Z 1), the re
maining model parameters E j , Fi , Wj and Wi contained in Eq. (22) may be calculated. 
The function Pi(Z) may then be found in the form 

For the function OJ(z) the calculation scheme may be - for instance - expressed as 

[2 + ki • (ZI - zo). sinh (kiZI - kjzo) - 2 cosh (kiZI - kjzo)] . Oi(Z) = 

k3 [( ) p() ( ) p() P;(ZI) - P;(zo)] . h(k k) = - i ZI - Z • i Zo + Z - Zo • j ZI + k~ sm i Z I - iZO + 

+ k; . [ -(ZI - z). p;(zo) + (z - zo) . P;(ZI) + Pj(zo) + Pj(z,)l . 

. cosh (kjZl - kjzo) + k~ . [ -(z - zo). p;(zo) + (ZI - z). P;(Zl) -

- Pj(zo) - Pi(ZI)] . (29) 

Relations (28) and (29) are satisfactory for regions I and III. In case of region IV the 
parameter P;(ZI) cannot be determined from relation (27), as the velocity at the 
liquid surface is not measured. From the condition of the zero value of Qcp (Table I), 
however, the zero value of the function OJ(Z 1) results. Consequently, required value 
p;(z I) may be determined from (29) after a suitable rearrangement. 

The so far described solution method demands a separate solution of every region, 
i.e. regardless to the results of modelling of the adjacent region. If we want to inter
connect the three solutions, each of them must satisfy the conditions 

or 

QIIl = Q 1V . WIll = wiV • -Ill = WIV • = H r E < D /2· D/2) (30b) <p tp' r r' Wz z' Z 1 , 1, , 

where the upper index (Roman numerals) signifies the relation to the given region. 

Certain difficulty in comparing individual solutions on the interface of two regions 
term after term arises due to the existence of the zero term of the series for Wz in regions 
I and III, while in region IV it has a zero value. Here the departing point is again the 
repetition of Dini development, by means of which series (26), which, due to the use 
of functions Tf and Tfll has a non vanishing zero term, is transformed into a series 
without zero term, using the function Tt. From conditions (30) the values of Pj(HJ 
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and P; (HI) corresponding to the examined region are obtained, without making 
experimental examinations in this cross section. Further calculation of the given 
region may then proceed by a standard above described way. More detailed data 
about the method are quoted in reference25 • 

EXPERIMEl\T AL 

l:.xperiments were carried out in the apparatus represented in Fig. 1. Their results have been 
used for the determination of the boundary conditions and for estimating the suitability of the 
equipment for flow modelling. The mixing tank used had diameter D = 1 m. The angle of 
the bottom in the shape of truncated cone was 120 0 and the diameter of its smaller (lower) 
base equalled to one sixth of the vessel diameter, i.e. 0·17 m. The width of four radial baffles 
reaching from the bottom to the liquid surface equalled to one tenth of vessel diameter, i.e. 
0·10 m. The diamater d of a high-speed impeller with six plane blades reached 1/3 or 2/5 of the 
tank diameter D, i.e. 333 or 400 mm. Tn accordance with the standard26 the blade angle was 45° 
and the blade width equal to 1/5 of d. The diameter DI of the draft-tube always exceeded the 
impeller diameter d by 1O~~ - i.e. equalled to 366 mm or 440 mm. The draft-tube length HI 
was in both cases 667 mm. The liquid surface height reached the value H = 1 m in the cylindrical 
part of the tank. In all experiments tap water was used. The charge volume was 0·86 m3 . 

For determination of the so-called mean flow of turbulent liquid in the chosen profiles a five 
hole Pitot tube was used. This combined pressure sensor (already described by Kratky and co
workers27 ) looks like a small cylinder 3·5 mm in diameter with the entering end in the shape 
of a foursided truncated pyramid with vertex angle 90'. The centres of individual probe holes 
are in two perpendicular planes intersecting in the axis of the middle hole. The holes were con
nected with pressure gauges (inclined manometers under the angle 30°) by means of polyethylene 
tubings in a way securing the time stabilization of data. The measurement results consisted 
especially of the data of the angles of the mean velocity direction W. After obtaining these data 
the measurement of the mean velocity w by thermoanemometric method followed. Here, the 
electrically heated sensor of constant temperature is exposed to the cooling effect of liquid stream. 
In dependence on the velocity of flow the rate of heat transfer between the sensor and the medium 
can also be specified. And knowing the heating voltage of the probe, we may then assess the 
flow velocity (non-linear dependence). In the experiments thermoanemometer28 DISA was used, 
consisting of feed unit 55M05, main unit 55MO 1 and standard bridge 55M 10. As a sensor 
a wedge-shaped probe was used, consisting of a nickel film 1 mm in length and 0·2 mm in width 
protected from the environment by a quartz layer about 211m thick (see29). The output 
voltage signal of the thermoanemometer was processed by means of an additional electronic 
equipment - linearizer3o , its respective transformation function for the given probe 
"as adjusted by means of callibration measurements. Finally, the mean value of linearized 
voltage signal was recorded by the digital voltmeter DISA 55D31, the proportionality constant 
between voltage and mean velocity value IV was given by the choice of the terminal amplification 
of the linearizer. 

The motion of the sensors in question, i.e. the Pitot tube or the thermoanemometer probe 
in the liquid volume was realized by means of a special equipment, constructed especially for the 
purpose of their precise and repeated adjustment. From the analysis of possibilities of different 
experimental methodologies we have estimated that the maximum error of the assessment of velo
city direction would in most cases be less than lOa and the relative error would not exceed 5 
to 10":,. 
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RESULTS AND DISCUSSION 

Choice of Equipment Configuration 

The examined equipment is characteristic for a more complex inner configuration 
(Fig. 1) than is usual in descriptions of mixing processes. The purpose of internals 
is to attain possibly the same reological conditions in the whole tank volume, which 
plays an important part in a number of processes, e.g. crystallization from solutions 
and others. The configuration is based on the results of preceding research3"3·34, 
in the course of which the dependence of the impeIIer volumetric flow rate and power 
input on the type of draft-tube and its position in the tank, on impeller size, its type 
and its position with respect to the draft-tube etc. was examined. Especially the last 
mentioned geometrical parameter proved to be very important (the maximum 
of impeller pumping effect in the lowest part of the draft-tube). 

Adequacy of 1 nitial Assumptions 

The fulfilment of the initial assumptions of the model simplifying the given problems 
may be expected due to the physical properties of water as model charge (incompres
sible liquid), the use of the high-speed impeIIer, constant frequency of revolutions, 
symmetrical tank configuration and installation of baffles. Similar simplifications 
are currently adopted for the sake of modelling the mixing process. A more detailed 
explanation, however, is necessary in case of assumption c) corresponding to the 
so-called Stokes simplification for creeping flow. In adopting it even for the case 
offully turbulent flow, we were following a notion about prevailing influenceofturbu
lence on transfer of properties. Kotchin and coworkers l for instance state that the 
so called turbulent viscosity under fully turbulent flow regime may exceed the value 
of molecular viscosity by 5 or 6 orders. In other words, an analogy is supposed between 
vortex propagation in two totaIIy different flow patterns (creeping vs turbulent flow). 

Boundary Conditions of the Model 

The introduction of boundary conditions on the boundaries which are penetrable 
for the streaming liquid depends in the given model on adequate experiments. For 
certain cross sections the model requires knowledge of mostly radial profiles of velo
city components wr and wz • As the discrete form of experimental data is unsuitable 
for their integration into the mathematical model, the individual profile sections 
have graduaIIy been replaced by straight lines 

wr=cxr.r+ar , rE<r~;r~+l); ~=O,l, ... (31) 
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(and, analogously, for wz). The range and number of sections corresponded to the 
individual character of the measured profile of the given velocity component in the 
respective base of the investigated region. To the obtained relation (31) formula 
(27) was applied, whose numerator, however, was transformed into the sum of inte
grals for individual linear sections of the profile. The example of the described re
placement by measurement of the given velocity components profile by means 
of a broken line is shown in Fig. 2. Similar procedure was chosen also in the remaining 
cases. The exception was the lower base of region I, where experiments with the equip
ment were not realized due to the lack of space. Analogously, with the results in the 
region of the draft-tube inlet and according to the quoted data 7 for draft-tube 
configuration, we have defined the so-called piston flow, i.e. the constant radial profile 
of Wz at zero value of W" for the plane of liquid inflow into the impeller. 

Model Calculation and Modelling Results 

The use of the model is conditioned by the calculation of functional values of cylindri
cal functions 10 ,1 l' No and N1 • In this case, polynomial approximations given by Abra
movitz and Stegun31 have been applied. The zero points (roots) of cylindrical func
tion (23) have been obtained by means of Newton tangent method23 • In solving 
relation (27) the introduction of boundary conditions in equation (31) has led to the 
necessity of calculating the values of further special functions given by integrals 

-oJ 
I r--t----

O-St- zlD =0 
I 

FIG. 2 

An example of gradual replacement of the n~' I 
experimentally obtained radial profile ofvelo- o ----------------
city components wr and Wz by linear sec
tions (diD 0'333; • n 21Omin- l ; 0 n 
150 min-I) 
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For values x ~ 8 the integrated definition relations for Jo and No (see24) were used, 
for x > 8 the method of asymptotic integral development into power series was 
applied, which was based on the repeated use of integration per partes32. The error 
of these numerical operations was mostly smaller than 10- 7 • A quick convergence 
of series (22), representing the solution of the chosen model made it possible to finish 
the solution even with a small number of its terms. In solving the model region 
by region, 10 to 12 terms were used and in solving the whole cylindrical space of the 
tank the number of terms was reduced by half to speed up the calculation. This was 
carried out by means of the minicomputer WANG MVP programmed in the language 
Basic - 2. 

The results of flow modelling for the smaller of the impellers used (d! D = 0'333) 
are represented in the form of streamlines in Figs 3 and 4. The former figure describes 
a situation following from the separate description of individual regions I, III and IV, 
the latter represents the global solution of the cylindrical part of the tank, i.e. the 
interconnection of solutions for the individual regions. Fig. 5 gives an example of com
parison of the results of the modelling procedures with data derived from the experi-

I/O 

06r 
I 

FIG. 3 

Modelling mean liquid flow region by region 
for impeller of diD 0'333 

1-0 

r 
I 

z/O 

0·6 

FIG. 4 

Modelling mean liquid flow for the cylindrical 
part of the tank as a whole for impeller 
diD 0'333 
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mental results. The course of individual curves significes a good quantitative agree
ment of the model with reality. The analysis of the best examined region III has 
implied that the error of determination of stream function values by the given model 
in the ascending flow at the vessel wall was in most cases smaller than 20% for both 
impeller sizes. Certain deterioration could be noticed only at the bigger impeller 
«dID = 0·4), when, in case of modelling the whole of the cylindrical part of the tank, 
the maximum error of the stream function determination in the upper base of region 
III near the vessel wall amounted to 50%. In comparison with the maximum value 
measured in this region the error was just about 30%. 

CONCLUSION 

The described method of modeliing of the mean liquid flow proved fully applicable 
for the description of the behaviour of homogeneous liquid in the tank with a draft
-tube, except for the regions of conical bottom and impeller rotor. Even in case 
of relatively complex space division the requirements on experimental investigation 
may be reduced to a single cross section (lower base of region III). The advantage 
of the model consists in an explicit form of the obtained solution. The described 
concenption is able of further development especially as far as the introduction 
of more realistic boundary conditions of the boundaries intersecting the liquid flow 
and apparently even the reassessment of some simplifying conditions are concerned. 
Even in its present state the model may be applied on other equipments with similar 
flow conditions. 

FIG. 5 

Radial profile of the stream function in re
gion III, assessed from the experimental 
data (curve 1), with the results of the model
ling of region III (curve 2) and with the 
results of modelling the whole of cylindrical 
part of the tank (curve 3) 
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LIST OF SYMBOLS 

parameter of vortex flow model 
parameter of solution of Eq. (6) 
mixing tank diameter (m) 
diameter of lower base of conical bottom (m) 
draft-tube diameter (m) 

impeller diameter (m) 
parameter of vortex flow model 
differential operator defined by Eq. (4) 
parameter of solution of Eq. (6) 
parameter of vortex flow model 
parameter of solution of Eq. (6) 
liquid height in cylindrical part of tank (m) 
height of conical bottom (m) 
height of draft-tube (m) 
cylindrical function of first kind (Bessel) of index p 
i-th root of transcendental function Tl (k) 
cylindrical function of second kind (Neumann) of index p 

impeller rotation frequency (s -1) 

course of dependence of D,¥ on axial coordinate 
course of dependence of 'II on axial coordinate 

pressure (Pa) 
radial coordinate (m) 
inner diameter of hollow cylinder (m) 
outer diameter of (hollow) cylinder (m) 
course of dependence of wr(p = 1) or wz(p = 0) on radial coordinate 
liquid mean velocity vector (m s - 1 ) 

general variable 
axial coordinate (m) 
position of cylinder lower base (hollow cylinder) (m) 
position of cylinder upper base (hollow cylinder) (m) 
parameter of Eq. (31) 
parameter of Eq. (31) 
general variable 
eddy viscosity (m2 s - 1) 

general variable 
density (kg m - 3) 

tangential coordinate 
Stokes stream function (m3, S-I) 

vorticity vector (s -1) 
parameter of vortex flow model defined by Eq. (18) 
parameter of vortex flow model defined by Eq. (18) 

Subscripts 

addition index (non-negative whole number~) 
projection into j-th direction 

r radial component 

Ho§falek, Fort: 
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z axial component 
( point on axial coordinate 
rp tangential component 
~ point on radial coordinate 

III 
IV 

* 

Superscripts 

for region I 
for region III 
for region IV 
solution of homogeneous partial differential equation 
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